
Problems:

1. How many die do you have to roll before you get a 5 followed by a 5?
2. How about for a 5 followed by a 6?

Solution:

We’re going to solve the problem by calculating a weighted average:

〈`〉 =

∑
` `× p(`)∑

` p(`)
. (1)

The trouble is we don’t have the length probability distribution, p(`), and
we need to restrict the sum to roll sequences that end in 55 (or 56). But we
don’t need to write out these sequences by hand.

To get a feel for why, let’s try a simpler version of the 55 problem: how
many times do we need to flip a coin before we get T followed by T?

1 The TT problem

It’s easy enough to write down the first few possibilities: TT, HTT, HHTT, THTT,
HHHTT, THHTT, TTHTT, HTHTT, THTHTT, . . .

If we had the full sequence, the average number of flips would be

〈`ends in TT〉 =
2× P (TT) + 3× P (HTT) + 4× (P (HHTT) + P (THTT)) + . . .

P (TT) + P (HTT) + P (HHTT) + P (THTT) + . . .
(2)

The bottom is just the sum of the probabilities of all possible outcomes
and the top is the sum over all outcomes of the number of flips times its
probability of occurrence.

But it’s nerve-wracking to enumerate these sequences by hand — is there
a case we forgot, did we double count something, is there an internal TT we
missed somewhere?

1

We can alleviate these concerns by generating them automatically, we just
have to come up with an appropriate symbol alphabet.

All the permissible flip sequences are TT-free “stems” capped by TT. A
typewriter with keys for H and TH could therefore generate all the stems for
these sequences. We’d just have to cap them by tacking a TT on at the end.

Exercise: Convince yourself that an {H, TH} keyboard can generate all
permissible sequences, or try to find a counterexample.

Representing the typewriter keys by their probabilities, the stems that can
be generated by one keypress are g = (PH + PTH) which become PH · PTT +
PTH · PTT when we cap them. Roll sequence probabilities concatenate like
PX · PY = PXY, so the single keypress roll sequences become PHTT + PTHTT.

The stems generated by two keypresses are

g2 = (PH + PTH)
2 = PHH + PHTH + PTHH + PTHTH

which become PHHTT + PHTHTT + PTHHTT + PTHTHTT when we cap them1.

Are you awake: Find the sum of probabilities for all possible stems (i.e.
the denominator to Eq. 5) in terms of g. Hint: don’t forget the sequence TT
which corresponds to pressing no keys on the stem generating typewriter.

1The probability of any particular sequence is just the product of the letter probabilities PTHTHTT = PT · PH · PT · PH · PT · PT.
For coin flips, this is just 1/2` but we’ll keep it written in per-symbol probabilities looking forward to dice.

2

The sum of all possible sequence probabilites is generated by

G =
∞∑
n=0

(PH + PTH)
n PTT =

[
1 + (PH + PTH) + (PH + PTH)

2 + · · ·
]
· PTT,

which gets us the sum of probabilites in the denominator of Eq. 1, but how
can we generate the weighted sum in the numerator?

We need to keep track of how many symbols are in the sequence corre-
sponding to each product of keypresses (e.g. PH · PTH · PTT). If we attach one
factor of a counter z to each PH and two factors of z to each PTH and PTT in
G, then the power of z on the terms of the expanded series will be equal to
the length of the corresponding sequence.

In other words,

G(z) =
[
1 +

(
PH · z + PTH · z2

)
+
(
PH · z + PTH · z2

)2
+ · · ·

]
· PTT · z2

= PTTz
2 + PHTTz

3 + (PHHTT + PTHTT) z
4 + (PHHHTT + · · ·) z5 . . .

Exercise: Calculate and interpret G′(z).

3

So, G(z) can get us both the numerator and denominator of the weighted
sum. G(z) evaluated at z = 1 gets us the sum of probabilities, and its deriva-
tive gets us the weighted sum of the number of flips we wanted in Eq. 1.

We can tidily write the average number of rolls like

〈`ends in 55〉 = ∂z logG(z)|z=1

=
G′(z)

G(z)

∣∣∣∣
z=1

.

All we need to do now is to find a closed expression for G(z).

From above, G(z) is just a geometric series in
(
PH · z + PTH · z2

)
, so:

G(z) =
∞∑
n=0

(
PH · z + PTH · z2

)n
PTT · z2 (3)

=
PTTz

2

1− (PH · z + PTH · z2)
. (4)

So the expected number of flips to get TT is just

〈`ends in TT〉 = ∂z logG(z)|z=1

=
1

G(z)
∂zG(z)

∣∣∣∣
z=1

=
1

G(z)
×

2PTT · z ·
(
1− PH · z − PTH · z2

)
+ (PH + 2PTH · z)PTT · z2

[1− (PH · z + PTH · z2)]2

∣∣∣∣
z=1

=
2PTT − 2PTTPH − 2PTTPTH + PHPTT + 2PTHPTT

PTT [1− (PH + PTH)]

=
1 + (1− PH)

1− (PH + PTH)
(5)

Plugging in PH = 1/2 and PTH = 1/4, we get

〈`ends in TT〉 = 6.

Exercise: What would happen if we left off the cap term, PTT · z2, in the
generating function G(z)?

4

Exercise: Interpret the expression for 〈`ends in TT〉.

Just to make sure all went well, we can plot the coefficients of G(z) against
a 250,000 run simulation:

0 5 10 15 20 25 30

0.05

0.10

0.15

0.20

0.25

Figure 1: [zn]G(z) vs empirical probabilities from simulation

2 The 55 problem

With that, we have all the tools we need to solve the 55 dice problem. What’s
that? Whoops too bad, we already solved it. Let’s see how.

The valid sequences for the 55 problem are all sequences of rolls that contain
no internal 55 and are capped by 55. Its stem-generating typewriter therefore
has keys for 1, 2, 3, 4, 6, 51, 52, 53, 54, and 56.2

The corresponding generating term is

g(z) =
[
(P1 + P2 + P3 + P4 + P6) · z + (P51 + P52 + P53 + P54 + P56) · z2

]
But we can just write the first sum of probabilities as P∼5 and the second

2This typewriter can generate all possible sequences that have no internal repeated 5s.

5

as P5X|X 6= 5 so the generating term looks like

g(z) =
(
P∼5 · z + P5X|X 6= 5 · z2

)
which looks the same as the generating term in Eq 3.

So we can just replace PH → P∼5, PTH → P5X|X 6=5, and the cap PTT → P55

in Eq. 5:

〈`ends in 55〉 =
1 + (1− P∼5)

1− (P∼5 + P5X|X 6=5)

Plugging in P∼5 = 5/6 = 30/36 and P5X|X 6=5 = 5/36, we get

〈`ends in 55〉 = 42

3 The 56 problem

56 capped sequences are a little bit harder, which we can see by trying to
build a stem-generating typewriter for them. For the 55 keyboard, we with-
held the 5 key and replaced it with five custom bi-symbol keys to ensure that
all internal 5s would be followed by a non-5.

The naive extension of that keyboard to the 56 case would be to remove
the 56 key and add one for 55 so that the total keyset becomes:

{1, 2, 3, 4, 6, 51, 52, 53, 54, 55}.

Exercise: Does this typewriter generate any impermissible stems?

Exercise: Does this typewriter generate all permissible stems?

This keyboard has two dueling constraints:

1. strings of repeated 5s are permissible if they don’t end in 6, and

2. a 6 must be able to appear anywhere except directly after a 5.

To accomodate strings of repeated 5s while protecting them from contigu-
ous 6s, we have to generalize the bi-symbol keys from the 55 keyboard to
tri-symbols, quad-symbols, quint-symbols, and even sex-symbols.

6

Actually we have to go all the way to∞-symbols. The rows of our keyboard
now include

• 1, 2, 3, 4, 6

• 51, 52, 53, 54

• 551, 552, 553, 554

• 5551, 5552, 5553, 5554

• . . .

The multi-symbol rolls seem like they defeat the purpose of the generating
function, which is to automatically generate the infinite set of outcomes by
writing down a finite set of keys. But they are no bother because they can
themselves be tidily generated:

P51 · z2 + P551 · z3 + P5551 · z4 + . . . = P5P1 · z2 + P5P5P1 · z3 + P5P5P5P1 · z4 + . . .

=
(
P5 · z + P5P5 · z2 + P5P5P5 · z3 + . . .

)
P1 · z

=

(
1

1− P5 · z
− 1

)
P1 · z

Are you awake: Why is there a −1 in the last line?

Adding in the sequences that end in in 2, 3, and 4, we get(
1

1− P5 · z
− 1

)
(P1 · z + P2 · z + P3 · z + P4 · z) =

(
1

1− P5 · z
− 1

)
PX · z

where PX = P1 + P2 + P3 + P4.

With that, we nearly have a complete set of keys for our typewriter, and
the stem generating term is

g(z) = [

1,2,3,4,6︷ ︸︸ ︷
P∼5 · z+

51,52,53,54,551,552,553,554,...︷ ︸︸ ︷(
1

1− P5 · z
− 1

)
PX · z]

To get the generating function for all possible sequences, we just add up the

7

terms for zero, one, two, three, etc. keypresses, and cap them all off with 56:

G(z) =
[
1 + g(z) + g(z)2 + g(z)3 + . . .

]
P56 · z2

=

[∞∑
n=0

g(z)n

]
P56 · z2

=
1

1− g(z)
P56 · z2

Exercise: Find a valid roll sequence that this typewriter can’t generate.

The keyboard we’ve built can generate almost every sequence that’s al-
lowed in the 56 case. The only sequences it can’t generate are ones that end
with a string of 5s followed immediately by a 6.

If we included keys for uncapped strings of 5s in the stem-generating key-
board, they would work with the 6 key to generate sequences with impermis-
sible internal 56s.

But if we make a second keyboard with keys for {-, 5, 55, 555, ...},
that we can press at most once after we finish with the first keyboard, then
we’ll generate all permissible roll sequences.

The complete generating function G(z) is

G(z) =

Keyboard 1︷ ︸︸ ︷
1

1− g(z)

Keyboard 2︷ ︸︸ ︷
1

1− P5 · z

Cap︷ ︸︸ ︷
P56 · z2 .

Exercise: Calculate G′(z)|z=1 and show that 〈`ends in 56〉 = 36.

Exercise: Interpret the result for 〈`ends in 56〉.

4 Why not just use expectations?

The problems we did here could all have been done by finding relationships
between expectation values — for the 55 problem, the expected number of

8

rolls can be found by just thinking about the three things that could happen.

We could:

1. immediately roll a 56, or

2. roll not a 5, and start at square one having wasted a roll, or

3. roll a 5, then not a 5, then start at square one having wasted two rolls

this yields

〈`〉 = 2× 1

36
+

30

36
(〈`〉+ 1) +

5

36
(〈`〉+ 2)

which gets 〈`〉 = 42.

This is fine if we want to calculate averages but it falls flat for finding other
statistics, which is sad. Probabilistic systems are inherently stochastic and
we want to know whether the average we calculate is the center of a tight
peak, or the diffuse consensus of a wide distribution.

Might the generating function tree bear fruit a second time? Let’s see what
wonders it has in store.

Important Exercise: Calculate ∂2z logG(z)|z=1 and interpret its signifi-
cance.

This result, while startling, is a little underwhelming. Couldn’t we have
a clean connection between higher moments and derivating our generating
function instead of adding ∂z logG(z) + ∂2z logG(z)?

In fact, this is but a mirage brought unto us by our own lack of foresight.
Each time we take a derivative of zn, we alter its nature, and the next time
it is but a husk of its original self. Had we been wise enough to employ ez as
our counter variable instead of z, might things have turned out differently?

Exercise: Replace z with ez in the generating function and take the
derivative. What must we set z to this time?

If that seems to be working, it’s time to take another crack at finding
higher moments.

9

Important Exercise: Calculate ∂2z logG(ez) and evaluate it at the value
of z you found above.

Exercise: Use your last result to show that σ2(`ends in TT) is 22.

The derivative properties of logG(ez) are a wonder to behold and are
testament to the wider realm of magical things you can do with generating
functions. Here’s a nice problem to leave off:

Exercise: Suppose you’re polling a population on a topic where a fraction
pA of the citizens believes one thing and pB = 1 − pA believe the other.
Find the generating function for the possible results of polling n citizens
at random.

Exercise: Taking the expected polling error to be the variance, find the
expected margin of error for the poll.

10

